Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.

نویسندگان

  • Jonas Rubenson
  • David G Lloyd
  • Thor F Besier
  • Denham B Heliams
  • Paul A Fournier
چکیده

Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the biomechanics and motor control of avian bipedalism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phalangeal joints kinematics during ostrich (Struthio camelus) locomotion

The ostrich is a highly cursorial bipedal land animal with a permanently elevated metatarsophalangeal joint supported by only two toes. Although locomotor kinematics in walking and running ostriches have been examined, these studies have been largely limited to above the metatarsophalangeal joint. In this study, kinematic data of all major toe joints were collected from gaits with double suppor...

متن کامل

Mechanics of cutting maneuvers by ostriches (Struthio camelus).

We studied the strategies used by cursorial bipeds (ostriches) to maneuver during running. Eight ostriches were induced to run along a trackway and execute turns. Ground reaction forces and three-dimensional kinematics of the body and leg joints were simultaneously recorded, allowing calculation of joint angles and quasi-static net joint torques. Sidesteps, where the leg on the outside of the t...

متن کامل

Phalangeal joints kinematics in ostrich (Struthio camelus) locomotion on sand

In ostriches, the toes are the only body parts that contact loose sand surfaces. Thus, toe interphalangeal joint motions may play vital biomechanical roles. However, there is little research on ostrich phalangeal joint movements while walking or running on sand. The results from the three-dimensional motion track analysis system Simi Motion show that gait pattern has no significant effect on th...

متن کامل

Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint

The three-dimensional anatomy of the ostrich (Struthio camelus) knee (femorotibial, femorofibular, and femoropatellar) joint has scarcely been studied, and could elucidate certain mechanobiological properties of sesamoid bones. The adult ostrich is unique in that it has double patellae, while another similar ratite bird, the emu, has none. Understanding why these patellae form and what purpose ...

متن کامل

Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2007